Ongoing work on NSF OCI-1127228 at UNH InterOperability Laboratory

Robert D. Russell <rdr@unh.edu>

InterOperability Laboratory & Computer Science Department
University of New Hampshire
Durham, New Hampshire 03824-3591, USA

UNH IOL Participants

- Bob Russell
 - P.I.
- Patrick MacArthur
 - UNH CS undergraduate student 2011-2012 AY
 - UNH CS Ph.D. graduate student 2012-2013 AY
 - UNH CS Ph.D. graduate student, NSF GRFP 2013-2014 AY
- Tim Carlin
 - UNH CS M.S. graduate student 2012 CY
- Qian Liu
 - UNH CS Ph.D. graduate student 2013-2014 AY
Close Collaborators

- University of Virginia
 - Malathi Veeraraghavan, P.I.
 - Zhengyang Liu, Ph.D. graduate student

- National Center for Atmospheric Research
 - John Dennis, P.I.

Overview

Project goals

- identify causes of variation in application-level performance
 - within the data center
 - between data centers
- Upgrade the identified weakest components
- Transfer the upgraded applications and tools to the broad scientific community
RDMA driver for GridFTP

- **Key value proposition**
 - No Operating System involvement in I/O transfers
 - Control and data move directly between user and NIC

- **GridFTP driver – Tim Carlin**
 - Performance depends on number of outstanding messages, message size, and RTT
 - cs.unh.edu/thesis-and-documentation-topics/

- **Conclusions**
 - GridFTP default buffer size, 256 Kibibytes, much too small
 - 256 Mebibytes is smallest at which RDMA outperforms TCP
 - GridFTP fixed double buffering bad for RDMA
 - Optimal number of buffers depends on buffer size and RTT

RDMA_WRITE throughput at 48 ms RTT

![Graph showing RDMA_WRITE throughput at 48 ms RTT](image)
Elapsed time for 64 GibiBytes

Total client CPU for 64 GibiBytes
Predicting “best” number of buffers

- **MNB** = minimum “best” number of buffers
 - \(\text{MNB} = \text{ceiling}((\text{RTT} \times 1.25 + \text{MTS} + \text{ATS}) / \text{MTS}) \)

- **RTT** = round trip time (measured on connection)

- **MTS** = message transfer size
 - includes all frames and all frame overhead for 1 message on the wire

- **ATS** = RDMA acknowledgment transfer size

Observed vs Predicted N buffers

<table>
<thead>
<tr>
<th>message size</th>
<th>observed</th>
<th>predicted</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mbps</td>
<td>nbuffers</td>
<td>nbuffers</td>
</tr>
<tr>
<td>16 Kibi</td>
<td>9753</td>
<td>3638</td>
<td>3638</td>
</tr>
<tr>
<td>64 Kibi</td>
<td>9760</td>
<td>913</td>
<td>911</td>
</tr>
<tr>
<td>256 Kibi</td>
<td>9762</td>
<td>229</td>
<td>229</td>
</tr>
<tr>
<td>1 Mibi</td>
<td>9762</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>4 Mibi</td>
<td>9762</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>16 Mibi</td>
<td>9763</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>64 Mibi</td>
<td>9763</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>256 Mibi</td>
<td>9763</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1 Gibi</td>
<td>9763</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Related RDMA Technology Transfer

- Course Module on Data Center Networking
 - Introduction to RDMA programming
 - www.cs.unh.edu/~rdr/rdma-intro-module.ppt
- High-level interface to RDMA – UNH-EXS
 - Based on published Open Group Standard ES-API
 - Intended to make RDMA programming more accessible
 - Open-source software for new projects not needing MPI
 - Runs on InfiniBand, RoCE, iWARP (at all speeds)
 - Software and documentation at:
 iol.unh.edu / services / research / unh-exs

UNH EXS Developments

- Provides both
 - SOCK_SEQPACKET – reliable datagram service
 - SOCK_STREAM – reliable byte-stream service
- Announced and presented at OFA user-day 19-apr-13
 - Current release level 1.3.1
- Testing with industry partner
- New dynamic algorithm to handle SOCK_STREAMs
 - Preserves zero-copy transfers as much as possible
 - Reduces latency
 - Preserves high bandwidth utilization
EXS Blast Throughput over FDR

EXS Blast CPU Usage over FDR
EXS throughput performance

- The bigger the message, the smaller the CPU usage (for fixed number of outstanding messages)
- The more simultaneously outstanding messages, the higher the throughput (for fixed message size)
- Reasonable “sweet spot”: 512 Kibibytes, 4 messages
 - throughput: 45.6 Gigabytes/second
 - CPU usage: 14.0% user, 9.4% kernel, 23.4% total
- Ideal “sweet spot”: 2 Mibibytes, 4 messages
 - throughput: 47.9 Gigabytes/second
 - CPU usage: 4.2% user, 2.3% kernel, 6.5% total

Patrick: EXS algorithm

- UNH EXS does zero-copy whenever possible
- For generic socket library, requires sender to wait for buffer advertisement
- Intermediate receive buffer allows sender to send immediately but is no longer zero-copy
- Solution: dynamic algorithm to choose direct or indirect transfers
Throughput Comparison

Dynamic Algorithm Throughput
Dynamic Algorithm Percent

Direct transfers (percent)

Simultaneous outstanding operations

2 MiB transfers
128 KiB transfers
8 KiB transfers
512 B transfers

MPI over RDMA run-time variance

- Measure and analyze time variation
 - Difficult in production CESM environment
 - Isolate network performance in IOL test environment

- UNH IOL test environment
 - Intel Westmere CPUs, 12 cores, 64 Gibibytes
 - InfiniBand QDR, PCIe-2 bus (ibdump cannot handle FDR yet)
 - InfiniBand SX6036 FDR-capable switch
MPI to RDMA Mapping

- To understand network traffic patterns from MPI calls
 - Data transfers
 - Collectives
 - Barriers

- Software tools used to gather data
 - EXTRAE – to get timing of MPI calls
 - PARAVER – to graphically display EXTRAE data
 - ibdump – to capture traces of RDMA (InfiniBand) traffic
 - Developed scripts to analyze data (UNH, UVA, NCAR)

Measuring MPI Performance over RDMA

- 9 different situations for send/recev
 - MPI operation: send, isend, ssend
 - MPI mode: eager, rendezvous-read, rendezvous-write

- Tools used to gather data
 - EXTRAE – to get timing of MPI calls
 - R – to obtain statistics from EXTRAE output
 - Scripts to massage data, plots

- Typical Output
 - 9 Box plots showing mean, 1st and 3rd quartiles, outliers for various MPI calls
 - 126 histograms total, consisting of 42 (all-points frequency, all-points value, outliers frequency) triplets
OpenMPI Eager vs. Rendezvous

- **Eager protocol**
 - Sends message immediately to MPI internal buffer, receiver must copy to user buffer

- **Rendezvous protocol**
 - Uses RDMA READ/WRITE operation to write directly to user buffer
 - Which operation is used is specified in `openib_flags` parameter
 - Used if:
 - `message_size > openib_eager_limit` (default 13KB)
 - `messages received > openib_eager_rdma_threshold`

MPI_Send variants

- **MPI_Send**: simple blocking send
- **MPI_Isend**: nonblocking send
 - Caller must call `MPI_Wait`, `MPI_Waitany`, or `MPI_Waitall` to get completion event
- **MPI_Ssend**: blocking “synchronous” send
 - Does not return until receiver has actually received the message
MPI_AllReduce mapping

6 tasks

MPI_Barrier mapping

6 tasks

8 tasks

Green: Level 1
Red: Level 2
Blue: Level 3
Black: Level 2/3
Patrick: example of outliers

log10 Duration (ns)

Count

3 4 5 6 7 8

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

log10 Duration (ns)

Count

3 4 5 6 7 8

0e+00 2e+09 4e+09 6e+09 8e+09 1e+10

myping−20130816−2min send eager

myping−20130816−2min send eager MPI_Send.1 All Points, Count= 5999000

myping−20130816−2min send eager MPI_Send.1 All Points Weighted
Future work

- Develop simulation model of MPI/RDMA network traffic
 - Based on our MPI to RDMA Mappings and timings
 - Should model traffic congestion at switches
 - Should be able to reproduce observed behavior
 - Will enable us to study different network topologies and routing algorithms and their effect on performance

- Integrate this model with existing OMNet++ based Dimemas simulator for MPI programs

- Port VCMTP to RDMA as a reliable multicast

- Proposal to ANL for GridFTP modifications